Estimation of Photon Specific Absorbed Fractions in Digimouse Voxel Phantom using Monte Carlo Simulation Code FLUKA

نویسندگان

  • A. Sinha
  • H.K. Patni
  • B.M. Dixit
  • N.K. Painuly
  • N. Singh
چکیده

BACKGROUND Most preclinical studies are carried out on mice. For internal dose assessment of a mouse, specific absorbed fraction (SAF) values play an important role. In most studies, SAF values are estimated using older standard human organ compositions and values for limited source target pairs. OBJECTIVE SAF values for monoenergetic photons of energies 15, 50, 100, 500, 1000 and 4000 keV were evaluated for the Digimouse voxel phantom incorporated in Monte Carlo code FLUKA. The organ sources considered in this study were lungs, skeleton, heart, bladder, testis, stomach, spleen, pancreas, liver, kidney, adrenal, eye and brain. The considered target organs were lungs, skeleton, heart, bladder, testis, stomach, spleen, pancreas, liver, kidney, adrenal and brain. Eye was considered as a target organ only for eye as a source organ. Organ compositions and densities were adopted from International Commission on Radiological Protection (ICRP) publication number 110. RESULTS Evaluated organ masses and SAF values are presented in tabular form. It is observed that SAF values decrease with increasing the source-to-target distance. The SAF value for self-irradiation decreases with increasing photon energy. The SAF values are also found to be dependent on the mass of target in such a way that higher values are obtained for lower masses. The effect of composition is highest in case of target organ lungs where mass and estimated SAF values are found to have larger differences. CONCLUSION These SAF values are very important for absorbed dose calculation for various organs of a mouse.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of Photon Specific Absorbed Fractions in Digimouse Voxel Phantom using Monte Carlo Simulation Code FLUKA

Background: Most preclinical studies are carried out on mice. For internal dose assessment of a mouse, specific absorbed fraction (SAF) values play an important role. In most studies, SAF values are estimated using older standard human organ compositions and values for limited source target pairs.Objective: SAF values for monoenergetic photons of energies 15, 50, 100, 500, 1000 and 4000 keV...

متن کامل

Evaluation of Electron Specific Absorbed Fractions in Organs of Digimouse Voxel Phantom Using Monte Carlo Simulation Code FLUKA

Background: For preclinical evaluations of radiopharmaceuticals, most studies are carried out on mice. Values of electron specific absorbed fractions (SAF) have had vital role in the assessment of absorbed dose. In past studies, electron specific absorbed fractions were given for limited source target pairs using older reports of human organ compositions.Objective: Electron specific absorbed fr...

متن کامل

Thorax organ dose estimation in computed tomography based on patient CT data using Monte Carlo simulation

Background:  This study presents patient specific and organ dose estimation in computed tomography (CT) imaging of thorax directly from patient CT image using Monte Carlo simulation.  Patient's CT image is considered as the patient specific phantom and the best representative of patient physical index in order to calculate specific organ dose. Materials and Methods: EGSnrc /BEAMnr...

متن کامل

Development of Prototype Iranian male pelvic phantom for internal dosimetry

Introduction: Existing phantoms have been constructed based on Caucasian, non-Caucasian and race-specific datasets. According to previous studies made efforts to present Korean- specific phantoms and Chinese female phantom based on CVH dataset due to compare the resulting internal dosimetry with the Caucasian based data showed possible racial difference in human anatomy between ...

متن کامل

The influence of neutron contamination on pacemaker in photon beam radiotherapy by LINAC using the Monte Carlo method

Introduction: In radiation therapy with high-energy photon beams (E > 7 MeV) neutrons are generated mainly in LINACs head thorough (γ, n) interactions. These neutrons affect the shielding requirements in radiation therapy rooms. According to the protocol TG-34, photon absorbed dose of 10Gy can cause permanent damage to the pacemaker and the dose of 2Gy can make minor changes in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016